Closed expressions for coefficients in weighted Newton-Cotes quadratures
نویسندگان
چکیده
منابع مشابه
Centroidal Mean Derivative - Based Closed Newton Cotes Quadrature
In this paper, a new scheme of the evaluation of numerical integration by using Centroidal mean derivative based closed Newton cotes quadrature rule (CMDCNC) is presented in which the centroidal mean is used for the computation of function derivative. The accuracy of these numerical formulas are higher than the existing closed Newton cotes quadrature (CNC) fromula. The error terms are also obta...
متن کاملRoot Mean Square Derivative - Based Closed Newton Cotes Quadrature
In this paper, a set of Root mean square derivative based closed Newton Cotes quadrature formula (RMSDCNC) is introduced in which the derivative value is included in addition to the existing closed Newton Cotes quadrature (CNC) formula for the calculation of a definite integral in the inetrval [a, b]. These derivative value is measured by using the root mean square value. The proposed formula y...
متن کاملHigh-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems
The connection between closed Newton-Cotes, trigonometrically-fitted differential methods and symplectic integrators is investigated in this paper. It is known from the literature that several one step symplectic integrators have been obtained based on symplectic geometry. However, the investigation of multistep symplectic integrators is very poor. Zhu et al. (1996) presented the well known ope...
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملComparison of Arithmetic Mean, Geometric Mean and Harmonic Mean Derivative-Based Closed Newton Cotes Quadrature
In this paper, the computation of numerical integration using arithmetic mean (AMDCNC), geometric mean (GMDCNC) and harmonic mean (HMDCNC) derivativebased closed Newton cotes quadrature rules are compared with the existing closed Newton cotes quadrature rule (CNC). The comparison shows that, arithmetic mean-based rule gives better solution than the other two rules. This set of quadrature rules ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2013
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1304649m